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Abstract--Closed form expressions for the fully developed velocity, temperature and concentration profiles 
in a vertical channel are found by solving the equations for a cavity in the limit as the aspect ratio tends to 
infinity. We consider plane, steady, laminar, Boussinesq flow of an ideal gas-vapour mixture. The vertical 
walls are held at different constant temperatures and compositions, are impermeable to the gas and non- 
slip. The finite mass transfer effects of interfacial velocity and interdiffusion of enthalpy are included. 

0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

In 1954, Batchelor [l] investigated heat transfer across 
cavities filled with a single fluid. He realised that if the 
aspect ratio is large enough, a fully developed regime 
could exist in the: region sufficiently far from either of 
the horizontal surfaces. Here the temperature would 
vary linearly across the cavity while the purely vertical 
velocity would h.ave a symmetric cubic profile. This is 
identical to the solution for a cavity bounded only by 
two vertical walls, reported in 1946 by Jones and 
Furry [2] and in many textbooks [3-6]. Various 
attempts [ 1,7-91 to find the minimum aspect ratio for 
which this regime exists (in the single fluid case), will 
be treated in a subsequent paper. 

In 1972, Aung [lo] found exact solutions for fully 
developed temperature and velocity profiles in vertical 
channels open at the top and bottom to a uniform 
environment. The temperature variation is 
unchanged, but the velocity profile contains an 
additional constant governing the influence of the 
ambient temperature and hence the net vertical mass 
flux and the deviation of the velocity profile from odd 
symmetry. Aung, also solved the problem for constant 
wall heat fluxes. 

While the most familiar fully developed flows (e.g. 
plane and axisyjmmetric Poiseuille flow, and that of 
Jones and Furry [2]) are unidirectional, exact solu- 
tions have been published for the plane flow of a pure 
fluid between vertical [ 1 l] and horizontal [ 121 parallel 
plates with uniform normal interfacial velocity and 
buoyancy effects, due to heat transfer. 

In the first treatment of the effect of a diffusing 
species, Nelson and Wood [13] showed that Aung’s 
results for the constant wall temperature case may be 
simply extended to include constant wall vapour mass 

fraction provided that the vapour flux is small enough 
for the interfacial velocity and the interdiffusion of 
enthalpy to be neglected. 

In the study by T. S. Lee et al. of heat and mass 
transfer across finite vertical channels [14], the high 
mass transfer rate effects of interfacial velocity and 
the interdiffusion of enthalpy are included but the 
mass transfer boundary conditions (constant and zero 
flux at the two opposing vertical walls) prevent the 
establishment of a fully developed regime, although 
at the lower mass transfer rates the results indicate 
invariant axial velocity profiles over much of the chan- 
nel height if one or other of the buoyancy forces is 
dominant (i.e. very large or very small INI). It is shown 
later in the present paper that a fully developed regime 
can exist with non-zero transverse velocity, but only 
if it is constant. 

Recent numerical work on heat and mass transfer 
in vertical cavities [15] and rectilinear [16, 171 and 
axisymmetric [ 18-201 conduits filled with gas-vapour 
mixtures has suggested that mass transfer can sig- 
nificantly change both the flow field and the overall 
energy transfer rate-a conclusion supported by the 
present analysis. 

2. GENERAL MATHEMATICAL MODEL 

In this section, we present the dimensionless field 
equations, boundary conditions and wall fluxes appli- 
cable for gas-vapour mixtures in vertical, two-dimen- 
sional cavities of arbitrary aspect ratio (the geometry 
and boundary conditions are shown in Fig. 1). In the 
following section, we derive their limiting forms for 
large aspect ratio. The field variables are non- 
dimensionalised so as to ensure that their values are 
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NOMENCLATURE 

cavity aspect ratio 
blowing number, 
(~*,-%,)/(~A,- 1) 
cj constants 
isobaric specific heat 
binary diffusivity 
energy flux relative to fixed 
coordinates 
gravitational field strength 
modified Grashof number, 
MT,- T,)(l +W31v2 
specific enthalpy 
reduced vapour enthalpy base, 
&D,,l(T,- T,)k 
thermal conductivity 
cavity width 
vapour Lewis number, k/pcpADAB 
interdiffusion Lewis number, 
k/p (cp, - cp,)(c~~, - ~)DA, 
mass flux relative to fixed coordinates 
buoyancy ratio, 
((WA,-w,J/B(r,-To) 
modified Nusselt number, 
-e,l(T,- T,)k, at X = 0, 1 
(total) pressure 
reduced pressure, 
1’Cp+ pgy)/v’Gr*dp 
Schmidt number, v/DAB 
temperature 
horizontal and vertical components 
ofv 
reduced horizontal velocity 
component, lu/DAB ln(B+ 1) 
primitive velocity vector 

V reduced vertical velocity component, 
lv/vGr* 

x3 Y primitive horizontal and vertical 
coordinates 

x reduced horizontal coordinate, 
x = x/l 

Y reduced vertical coordinate, 
Y = y/&l. 

Greek symbols 
B thermal coefficient of volumetric 

expansion 
i vapour mass fraction coefficient of 

volumetric expansion 
e reduced temperature, 

(T- T,)/(T,- To) 
V kinematic viscosity 
P density 

; 
function defined by equation (41) 
reduced mass fraction, 
(WA - %J/(%, -W&J 

w mass fraction. 

Subscripts 
0 at the vertical wall x = 0 
1 at the vertical wall X = 1 
A species A, the vapour 
B species B, the gas 
1 at the vertical wall x = 1 
X horizontal component 
Y vertical component 
co in the limit & + co. 

of order unity in the tall cavity limit, as will be appar- 
ent once the solution is obtained. The independent 
variables are normalised by transforming the cavity 
to a square domain. 

For arbitrary aspect ratio, the problem depends on 
eight dimensionless parameters, &, B, N, SC, LeA, 
Le.4b Gr* and H. The last of these, H, the dimen- 
sionless base enthalpy of the vapour, does not enter 
into the cavity equations at all but it does occur in the 
energy flux at the vertical walls. 

The interdiffusion Lewis number, Le,,, controls the 
advection of energy apart from that which may be 
accounted for by the specific heat of the vapour. Some 
of this is because the mixture specific heat differs from 
that of the vapour, and some is due to the species 
interdiffusion effect. The ratio of the mass transfer 
driving force, B, to LeAB governs the importance of 

the interdiffusive energy flux relative to conduction. 
For very dilute vapours in cavities of arbitrary aspect 
ratio, it may be more convenient to use a Lewis num- 
ber based on the gas specific heat, but the present 
choice leads to the simplest formulation for the fully 
developed regime. 

2.1. The jeld equations 
Assuming that the density variation is only impor- 

tant in the buoyancy force term, which may be mod- 
elled as a linear function of temperature and mass 
fraction, and taking the y-direction as vertical, the 
equations of continuity and motion for the mixture 
are [21] : 

au+ ScGr* aV 
8X &ln(B+l)E= 

0 (1) 
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Fig. 1. Geometry ,and boundary conditions for cavity of 
arbitrary aspect ratio. 
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With the temperature and mass fraction varying 
through the cavity, supersaturation of the vapour is 
possible. Whether or not this leads to condensation in 
the body of the cavity, and, if so, at what rate droplet 
formation and growth proceed, depends on the pres- 
ence, nature and distribution of nucleating aerosols. 
An analysis of these molecular kinetics lies outside the 
scope of continuum fluid mechanics and this project. 
The problem is investigated in ref. [ 151, and the physics 
is described in meteorological treatises [22,23]. If con- 
densation takes place only at the boundaries, the con- 

servation of vapour in the body of the cavity requires 
[24] : 

V*n, = 0 (4) 

where, for Fickian diffusion, 

nA = P(~J~v- D,,VWA) (5) 

The species equation, with constant diffusivity, is 
therefore 

Neglecting gravitational potential energy, the equa- 
tion of energy is [24], 

V-e=0 (7) 

and if species A and B form a perfect gaseous mixture 
(partial specific enthalpies independent of com- 
position and species specific heats independent of tem- 
perature [25]) and emission and absorption of radi- 
ation, viscous dissipation, advection of kinetic energy, 
and the Dufour effect may be neglected, the energy 
flux is [26], 

e = -kVT+p {[(CPA--,) (‘p? -v)+c,v](T-T,) 

+(&-~BJ e -v)+&v} (8) 

It does not make sense to treat the mixture specific 
heat as a constant if the interdiffusion term is included, 
as this introduces a term into the energy flux diver- 
gence which is dependent on the temperature datum 
for enthalpy, which must be arbitrary. If the mixture 
specific heat is treated as constant in the energy flux 
divergence (the energy equation), a spurious source 
term occurs. 

For constant thermal conductivity, the energy equa- 
tion is therefore : 

= & (B4+ l)ln(B+ l)U-8% 
i [ AB 1 
+ It@+ 1) u 

I 
E 

tiA ax 

(Bd+l)Gr*ScV-;Fy 1 
Gr* SC +---- Le.4 (9) 

2.2. Boundary conditions 
Take the vertical walls to be at uniform tem- 

peratures and vapour mass fractions, and permeable 
to the vapour only. Take the horizontal walls to be 
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adiabatic and impermeable, and all walls to be non- 
slip. The dimensionless boundary conditions are thus : 

8’4 L-ln(B+l)U,g=O ax2 
U(0, Y) = B ~ am, r) 

ln(B+l) ax x=o 

(10) a28, 1 

{ [ ax2 Le,, (B4,+l)ln(B+l)U_-Bg 1 
B am r) 

‘(“’ = (B+l)ln(B+l) ax *=, (“) 

U(X,O) = U(X, 1) = 0 (12) 

V(0, Y) = V(1, Y) = 0 (13) 

V(X,O) = V(X, 1) = 0 (14) 

O(O, Y) = O(l, Y) - 1 = 0 (15) 

4(0, r) = +(l, Y)--1 = 0 (16) 

i ae --=‘*=O, aty=O,l 
day day (17) 

2.3. The wall$uxes 
The horizontal component of vapour mass flux rela- 

tive to stationary coordinates, from equation (5), may 
be simplified at the vertical walls by the boundary 
conditions on U, equations (lo)-( 1 l), to give 

nA, = pu, x=0,1 (18) 

thus the dimensionless horizontal component of 
velocity, U, may be used as a dimensionless vapour 
flux. A Sherwood number, i.e. a mass flux normalised 
by the difference in vapour mass fraction across the 
cavity is less useful as explained in detail by Spalding 
[27, 281. 

The dimensionless energy fluxes at the walls are : 

Nu,* = ax x=o 

Nu?=~,~;; ( 

-Hln(B+ l)U(O, Y) (19) 

- H+ $ ln(B+l)U(l, Y) 
A 

) 

(20) 

3. THE TALL CAVITY LIMIT 

We seek an asymptotic solution of this problem for 
large aspect ratio. 

3.1. Equation set forjirst approximation 
In the limit d + co, equations (l)-(3), (6) (9) and 

(lo)-( 17) become 

SO-0 
ax - 

ap,_ 
ax -O 

(21) 

(22) 

a2v, ln(B+l) av, ap, e,+iq, -~ 
ax2 SC U"ax-ar+ l+N =o 

(23) 

(24) 

+ ln(B+ 1) u 
~ 

LeA 

subject to : 

e,(o, r) = dh(o, Y) = 0 (26) 

emu, y> = L(L r) = 1 (27) 

(28) 

84, 
um(l’r) = (B+l):(B+l) 8X x=l (29) 

Vco(O, r) = V,(l, r) = 0 (30) 

U,(X,O) = U,(X, 1) = 0 (31) 

V,(X,O) = V,(X, 1) = 0 (32) 

provided that the other parameters are fixed and finite. 
The y-derivatives of the velocity components have 

dropped out of the momentum and continuity equa- 
tions. This means that boundary conditions equations 
(31)-(32) must be abandoned. This is entirely anal- 
ogous to the situation for the tangential velocity com- 
ponent in viscous flow over a non-slip surface at high 
Reynolds number [29]. It means that unless the solu- 
tion fortuitously matches these conditions (without 
their being enforced) there will be regions of non- 
uniformity for the velocity solution in the neigh- 
bourhood of Y = 0 and Y = 1. This will in turn affect 
the species and temperature distributions through the 
advection effect of the horizontal component of 
velocity. 

The equation set above, minus equations (31)-(32) 
will apply for the mid-section of the cavity, sufficiently 
far away from the horizontal surfaces. The precise 
meaning of this statement must await the solution of 
the ceiling and floor problems. 

4. THE FULLY DEVELOPED SOLUTION 

Being linear and only weakly coupled, these equa- 
tions are easily solved to give : 

u, = 1 (33) 

v, = T_N[c,(“-e-)+c’(“-$-)+c’(“-x)l 

(34) 

dP,_ & +N$m +c 
dY- l+N 4 (35) 
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$ 

00 

= @+lY-1 
B (36) 

o 

a 
= (B+ l)“/“A - 1 

(B+ I)‘-- 1 
(37) 

where (c, is indeterminate, as discussed in Section 4.1) 

Le: 
c, =z 

ln’(B+ l)(Sc-Le,) 
(38) 

N 
c2 = 

ln2(B+ l)(Sc- 1) 

1 
” = In(B+1) 

+c‘$(l+N) 1 (9 
~ = (Bf l)““- 1 

(B+ l)lise- 1 

and the quantities with overbars are averages across 
the cavity, given by 

1 1 =--- 
ln(B+ 1) B 

Le, 1 -- 
=In(B+ 1) (B+ l)‘/%- 1 (43) 

As in the heat transfer only solution of Aung [lo], 
the temperature (and here also mass fraction) dis- 
tribution is unaffected by the vertical velocity. With 
the substitution of mole fractions for mass fractions 
(arising because cd the assumption of constant density 
rather than const.ant total molar concentration), the 
distributions, equations (36)-(37), are identical to 
those given by Bird, Stewart and Lightfoot [30] for 
simultaneous heat and mass transfer across a stagnant 
film of noncondensable gas ; that concentration dis- 
tribution being Stefan’s law [31, 321. 

A temperature distribution with the same form as 
equation (37) was obtained by Ranganathan and Vis- 
kanta [33] for a rectangular cavity in the special cases 
N = - 1 and LeA = 1, for which net buoyancy effects 
vanish everywhere, and for N = - 1 and B + 00, for 
which the mass transfer induced horizontal velocities 
are assumed to overwhelm the buoyancy induced ver- 
tical velocities. Their temperature distribution con- 
tains a Lewis number based on the mixture specific 
heat, rather than the vapour specific heat. This differ- 
ence arises from their neglect of species interdiffusion 
in the energy equation and so vanishes if the gas and 
vapour specific heats are equal. Reference [33] gives 
plots of the concentration profile for various values 
of B. The temperature profile is identical for Le, = 1. 

Larger (smaller) vapour Lewis numbers reduce 
(increase) the departure from a linear profile. 

The velocity profile here is a new result, differing 
from the heat transfer cubic profile because of the 
horizontal advection of vertical momentum due to the 
vapour migration and the curved buoyancy dis- 
tribution ; the temperature and mass fraction varying 
differently and nonlinearly across the cavity. 

The solution has a removable singularity at B = 0. 
It is made analytic for - 1 < B < co by putting 

(44) 

dP, 1 
x=2+c4 

dh =x (46) 

8, =x (47) 

for B = 0, which is equivalent to the solution of 
Nelson and Woods [13]. 

There are also removable singularities at SC = 1 and 
LeA which are less important. The non- 
dimensionalisation breaks down in the vicinity of 
N = - 1, where V, must be unbounded if v is 
nonzero. 

The effect of the mass transfer driving force, B, 
on the buoyancy-induced vertical velocity profile is 
illustrated in Fig. 2. 

4.1. The vertical pressure gradient 
A more general solution that still satisfies equations 

(21)-(25) and boundary conditions (26)-(30) is one 
where cq varies with Y, but this must be rejected on 
physical grounds, as it leads to a net vertical mass flux 
that varies with height. This violates the conservation 
of mass, as by equations (18) and (33) there is no net 
addition of mass to the cavity through the side walls at 
any horizontal section for which this fully developed 
solution applies. 

The value of the constant cd remains indeterminate. 
It is clearly related to the net vertical mass flux, which 
is proportional to the integral of V, across the cavity. 
This integral depends on c, through cj. 

In the small mass transfer limit, the integral from 
X = 0 to 1 of V, equation (44) is -c&2. For the 
cavity, the net vertical mass flux in this limiting case 
must be zero (as there is no mass flux at the walls) so 
that cq = 0. For an open channel, c, is determined 
by the pressure boundary conditions at the inlet and 
outlet. 

No such simple treatment is possible for a cavity 
with B # 0. An inspection of Fig. 2, for which cq = 0 
in all the plotted profiles, reveals that the condition 
of the pressure gradient balancing the mean density 
perturbation ; i.e. cq = 0, from equation (35) ; does not 
imply a net zero vertical mass flux. Further, if Gr* # 0, 
a recirculating flow would be expected, which would 
certainly cause the net mass added to the cavity 
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Fig. 2. Vertical, buoyancy-induced velocity profiles with 
finite horizontal mass transfer. The other parameters are held 

constant at N = 1, Le, = 0.5, SC = 0.6 and c, = 0. 

through the side walls to be different in the top and 
bottom end regions. This difference cannot be deter- 
mined without the solutions valid for these regions. 

4.2. Mass and energyjuxes at the vertical walls 
In the first approximation for the tall cavity, 

sufficiently far from the horizontal surfaces, the 
dimensionless mass transfer rate, U(0, Y) or U(1, Y), 
is unity at every point along either vertical wall, 
regardless of the values of the other parameters of 
the problem. The Nusselt number is also a constant 
(independent of position on the wall, and the same 
for each wall) but does depend on B, LeA and H. It is 
given by equations (19)-(20), (33), (37) and (47) as 

1 
-H BZO 

Nuz = Le,[(B+ l)‘@-I] 

B=O 

(48) 

If the vapour condenses at one of the walls, the 
vapour base enthalpy, hAo, is naturally taken as the 
enthalpy of the vapour at T, relative to that of the 

condensed state at the same temperature. This can 
easily make H ln(B+ 1) (the dimensionless ‘latent heat 
transfer’) the dominant component of the overall 
energy transfer equation (48). This is the same con- 
clusion as reached by Yan et al. [16], from their 
numerical studies of the finite length channel. For 
points well up the channel from the entrance, their 
results are well described by the above formula. 

For example, in their Case II (TI = 50°C 
r, = 30°C with both walls saturated with water vap- 
our and the total pressure about 1 atm), our dimen- 
sionless parameters take on the values H = 139, 
Le, = 0.47 and B = -0.054. Equation (48) gives 
Nuz = 8.851. For a point 560 channel widths up from 
the entrance, ref. [16] gives NM* = 8.849, which is 
excellent agreement. With saturated boundary con- 
ditions such as these, the vapour will certainly be 
supersaturated in the channel, so that gas-phase con- 
densation is possible, but this was neglected in the 
cited work. Equation (48) is therefore applicable. 

It is obvious from this example that the humidity 
difference has a large effect on the energy transfer, as 
will often be the case. 

5. FUTURE WORK 

5.1. The ceiling andjoor regions 
In the solution for the flow near a non-slip surface 

at high Reynolds numbers, the next stage after finding 
the basic inviscid flow is to expand the coordinate 
perpendicular to the surface where the boundary con- 
dition was dropped. Here the coordinate is Y and the 
obvious choice for the expansion factor is ,r4, so that 
the full equations have to be solved in these regions. 
This will be the subject of a subsequent paper. Once 
solutions are found for these regions, a composite 
solution can be constructed for a cavity with aspect 
ratio arbitrary above a minimum determined by the 
size of the end regions. 

5.2. Stability 
It is well known [5, 341 that the corresponding heat 

transfer only flow (i.e. that reported by Jones and 
Furry [2]) is susceptible to both stationary and 
travelling instabilities. Thus, while the studies pro- 
jected in Section 5.1 will define the aspect ratios for 
which the present solution is valid, a stability analysis 
must be performed to determine the applicable range 
of Gr* and the other parameters. 

6. CONCLUSION 

In this paper we have presented the fully developed 
profiles of temperature, mass fraction and velocity, 
and the consequent mass and energy fluxes at the 
vertical walls, in the space between two parallel walls 
at different but constant conditions for a perfect Bous- 
sinesq mixture of a gas and a vapour with constant 
properties except for the mixture specific heat. The 
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finite mass transfer effects of interfacial velocity and 
the interdiffusion of enthalpy are included. 

The governing equations were obtained from those 
for a rectangular cavity by taking the limit as the 
aspect ratio tended to infinity. In this process, the 
vertical gradients of all dependent variables except 
pressure dropped out of the field equations. As a 
consequence, the velocity boundary conditions at the 
horizontal surfaces had to be abandoned. The solu- 
tions presented thus apply equally well to flow in open 
channels as well as cavities, but only sufficiently far 
from the ends. Th,e question of how far is sufficiently 
far must await the solution for the flow in the end 
regions, which will be treated in a subsequent paper. 

In the zero mass, transfer limit, the temperature and 
mass fraction vary linearly across the cavity while the 
horizontal velocity is zero and the vertical velocity is 
described by a cutlic (odd symmetric for a cavity, and 
tending toward a:n even symmetric parabola as the 
imposed pressure gradient becomes large compared 
to the density perturbation for an open channel). For 
finite mass transfer, the horizontal velocity is non- 
zero, but must be (constant. This horizontal advection 
profoundly alters the transport of vapour, energy and 
momentum across the cavity, so that while their pro- 
files can still be expressed in closed form, this involves 
exponential functions rather than polynomials. The 
expression derived for the wall energy flux shows that 
the overall cavity energy transfer can be very much 
higher if a vapour condenses at the walls. 
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